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The nuclear spin and hfs in the (5s5p) 3Pi state of 14-year Cd113m have been measured by the optical 
double-resonance technique. The isotope was produced by the reaction Cd112(w,Y)Cd113tt\ After irradiation, 
the Cd113m was separated from the Cd112 with an electromagnetic mass separator. The nuclear spin / , and the 
hfs separations are: 1 = 11/2; v(13/2-11/2) =4310.572(5) Mc/sec; ̂ (11/2-9/2) =3949.625(7) Mc/sec. The 
hfs coupling constants, corrected to second order for interaction with the ZP% and 3Po states, are: A (113m) 
= —686.0425(8) Mc/sec; B(ll$m) — +169.047(9) Mc/sec. If we neglect nuclear structure and quadrupole 
shielding effects, the nuclear moments are: ju(113m) = -1.08885(13W; Q(H3w) = -0.79(10) b. The ratio of 
the Cd113w and Cd109 quadrupole moments is Q(113w)/Q(109) = -1.02371 (4); this result is independent of 
the shielding corrections. The spin and magnetic moment are consistent with a (2^5/2)

6(1^7/2)8(l^ii/2)1 neu
tron assignment with some configuration mixing. We compare the observed quadrupole moments in cadmium 
and other spherical odd-neutron nuclei (A< 150,189<A <210) with predictions of the shell model, including 
configuration mixing, and with the quasiparticle model of Kisslinger and Sorensen. In addition, we show 
that the semiempirical formula 

Q=-Z(2j+l-2N)/(2j+2)lQQ(Z) 

accurately predicts the quadrupole-moment ratios for the isotopes of several elements. We find that Qo(Z) 
exhibits strongly oscillatory dependence on the nuclear charge Z with minima near the magic proton num
bers. We suggest that QQ(Z) may be interpreted in terms of the quadrupolar polarizability of the proton core. 

I. QUADRUPOLE MOMENTS OF ODD-NEUTRON 
NUCLEI 

AT present, our understanding of nuclear theory is 
not sufficient to enable us to make many accurate 

statements about nuclear moments. Among the more 
general conclusions that we can make is that electric 
multipole operators are independent of the nuclear 
interaction currents and, therefore, that the electric 
moments are determined solely by the nuclear charge 
density. Hence, the observed quardupole moments 
provide critical tests for proposed nuclear wave func
tions. The magnetic moments, on the other hand, de
pend, in addition, on the assumed form of the nucleon 
interaction currents. Consequently, discrepancies be
tween the observed and predicted magnetic moments 
must be attributed to uncertainties in both the wave 
functions and the Hamiltonian.1 

The jj-co\iplmg shell model of Mayer and Jensen,2 

which starts with a harmonic oscillator potential, a 
predominantly attractive spin-orbit potential, and a 
small I2 correction, does not account at all for the ob
served quadrupole moments and only rather poorly for 
the observed magnetic dipole moments. In particular, 
this model predicts zero quadrupole moments for odd-
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1 Amos de-Shalit, in Selected Topics in Nuclear Theory, edited by 

F. Janonch (International Atomic Energy Agency, Vienna, 1963). 
2 M. G. Mayer and J. H. D. Jensen, Elementary Theory of 

Nuclear Shell Structure (John Wiley & Sons, Inc., London, 1955). 

neutron nuclei, and a quadrupole moment of 

Q=l-(2j+l-2N)/(2j+2)2Qo 
for odd-proton nuclei, j being the total angular momen
tum of the last odd proton and N being the number of 
identical particles with the same quantum numbers as 
the last odd proton (iV<2y+l).3 This group of N 
nucleons (N odd) which gives rise to the observed 
nuclear spin are referred to as the /-shell. QQ is roughly 
related to the nuclear radius and is often estimated as 
<2o= froM2'3, where r0= 1.2X 10~13 cm. These predictions 
are grossly inconsistent with the observation that the 
quadrupole moments for odd-neutron nuclei are of the 
same order of magnitude as those observed for odd-
proton nuclei and that some nuclei exhibit very large 
moments. 

Theories which make use of a deformed harmonic 
oscillator potential as the basis for an individual particle 
approach to nuclei, of which perhaps the most notable 
is the work of Mottelson and Nilsson,4 have had con
siderable success in giving a semiphenomonological 
explanation of many nuclear properties in the region of 
heavy nuclei, particularly in providing the possibility 
of very large quadrupole moments. However, in the 
region below 4̂ = 150 and around the "doubly magic" 
closed shell at Pb208, this approach has not been particu
larly successful. The deformed nuclei have been ade
quately discussed in the literature,5 and we will not 
consider them further. In the regions of nuclei A < 150 
and 189<^4<210, we will consider models which are 

3 R. G. Sachs, Nuclear Theory (Addison-Wesley Publishing 
Company, Inc., Reading, Massachusetts, 1953). 

4 S . G. Nilsson, Kgl. Danske Videnskab. Selskab Mat.-Phys. 
Medd. 29, No. 16 (1955); B. Mottelson and S. G. Nilsson, Kgl. 
Danske Videnskab. Selskab, Mat. Fys. Skrift. 1, No. 8 (1959). 

5 E . Marshalek, L. W. Person, and R. K. Sheline, Rev. Mod. 
Phys. 35, 108 (1963). 
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TABLE I. Spins and nuclear moments in zinc, cadmium, and mercury. For magnetic dipole moments we list the Schmidt value, the 
theoretical value using the results of Arima and Horie [ju(Th)], and the experimental value. The values of ix(Th) were calculated with 
the pairing-energy parameter C—30 MeV, the value which gives the best agreement with nuclear binding energies. Unless otherwise 
specified, the experimental values are accurate to the number of decimal places given. 

Isotope 

3oZn36
65b 

3oZn37
67c 

4 8 C d 5 9
1 0 7 d 

48Cd61™ • 
4 8 C d 6 3

m * f 

48Cd63
111 « 

48Cd65113 « 
48Cd661 1 3 w h 

48Cd 6 7
1 1 5 * 

48Cd671 1 8 w * 
80H g l i 3 1 9 3 J 
80HgH3 1 9 3 - * 
8 0 H g U 5 1 9 6 k 

80Hgll5 1 9 5 w k 

soHgm1971 
8 0 H g u 7 1 9 7 w m 

8 0 H g u 9 1 9 9 n 

8 0 Hgi l9 1 9 9 * ° 
80Hgi212 0 1 n 'P 
80Hgl23 2 0 3 q 

Neutron configuration ina 

last unfilled shell 

(2^3 /2 ) 4 ( l / 5 /2 ) 3 

( 2 ^ 3 / 2 ) 4 ( l / 5 / 2 ) 5 

(2dmy(hmY 
(2dm)KHmY 
{2dmy{Hm)K3smY 
{2dmy{igmy$smy 
{2dmy(igm)K$smy 
(2dmyagV2)H^m)°(lhni2)1 

(2dm)&(lgV2)s(Ssii2)1(lhim)2 

(2dm)«(lgV2)8(3sm)0(lhim)3 

(lnm)w(2fbl2y(3pm)KSpm)Q 

(H 1 3/ 2 ) 1 1 (2 /5 /2) 2 (3^1/2) 0 (3^3/2) 0 

(U*13/2) 1 2 (2/5/ 2 ) 2 (3^i / 2 ) 1 ( 3 ^ / 2 ) ° 
(H13/2)11(2/5/2)4(3^1/2)°(3^ /2)o 
(li13/2)12(2/5/2)^(3^1/2)H3i>3/2)0 

(b-13/2)13(2/5/2)4(3^i/2)0(3^/2)o 
( l i l 3 /2 ) 1 2 (2 /5 / 2 ) 6 (3^1 / 2 ) 1 (3^3/2)° 
(1^3/2)

14(2/5/2)
5(3^1/2)0(3^3/2)

0 

(U13/2)
12(2/5/2)

6(3^i/2)
0(3^/2)

3 

(H13/2)
14(2/5/2)

5(3^i/2)
0(3^/2)4 

Spin 

5/2 
5/2 
5/2 
5/2 
5/2 
1/2 
1/2 

11/2 
11/2 
11/2 
1/2 

13/2 
1/2 

13/2 
1/2 

13/2 
1/2 
5/2 
3/2 
5/2 

/i(Sch) 
in/xisr 

+1.37 
+1.37 
-1 .91 
-1 .91 
-1 .91 
-1 .91 
-1 .91 
-1 .91 
-1 .91 
-1 .91 
+0.64 
-1 .91 
+0.64 
-1 .91 
+0.64 
-1 .91 
+0.64 
+1.37 
-1 .91 
+ 1.37 

/f(Th) 
in VN 

+0.79 
+1.02 
-0 .64 
-0 .76 
-0 .76 
-0 .98 
-1 .11 
-1 .37 
-1 .02 
-1 .22 
+0.64 
-1 .10 
+0.64 
-0 .99 
+0.64 
-1 .11 
+0.64 
+ 1.06 
-0 .48 
+0.89 

M.(Exp) 
in ixN 

+0.77 
+0.88 
-0 .62 
-0 .83 
-0.78(3) 
-0 .60 
-0 .62 
-1 .09 
-0 .65 
-1 .04 
+0.56(2) 
-1 .06 
+0.54 
-1 .05 
+0.52 
-1 .03 
+0.50 
+ 1.03(8) 
-0 .56 
+0.83(2) 

» In the mercury isotopes we omit the terms (1 fo/2)10 (2/7/2)8 which are common to all mercury isotopes. 
b See Ref. 9. 
°S. S. Dharmatti and H. F. Weaver, Jr., Phys. Rev. 85, 927 (1952); A. Lurio, Phys. Rev. 126, 1768 (1962). 
d See Ref. 8. 
e See Ref. 7. 
«R. M. Steffen and W. Zobel, Phys. Rev. 103, 126 (1956); H. J. Behrend and D. Budnick, Z. Physik 168, 155 (1962). 
« W. G. Proctor and F. C. Yu, Phys. Rev. 76, 1728 (1949). 
h This paper. 
i See Ref. 10. 
i These values are estimates based on preliminary results of W. W. Smith, W. T. Walter, and M. J. Staven, MIT Research Laboratory of Electronics, 

Quarterly Progress Report 70, 1963, pp. 33 and 39 (unpublished). 
k W. W. Smith, MIT Research Laboratory of Electronics, Quarterly Progress Report 70, 1963, p. 33 (unpublished). 
i W. T. Walter, Bull. Am. Phys. Soc. 7, 295 (1962). 
™ H. R. Hirsch, J. Opt. Soc. Am. 51, 1192 (1961). 
n B. Cagnac, Ann. Phys. (Paris) 6, 467 (1961). 
o L. Grodzins, R. W. Bauer, and H. H. Wilson, Phys. Rev. 124, 1897 (1961). 
P M. N. McDermott and W. Lichten, Phys. Rev. 119, 134 (1960). 
q Estimated values based on results of O. Redi and H. H. Stroke, MIT Research Laboratory of Electronics, Quarterly Progress Report 71, 1963, 

p. 33 (unpublished). 

based on a spherical potential with residual two-body 
forces. 

It has been realized for a long time that if one assumes 
the existence of residual nucleon-nucleon interactions 
which are not taken into account by the average shell-
model central potential, then substantial corrections to 
the shell model will occur. In fact, using a Hamiltonian 
of the form 

5C=5Cshell+E Va 
i>3 

and proceeding via perturbation theory, Arima and 
Horie6 have found very large corrections to the magnetic 
dipole moments, even though the ground-state wave 
function is not changed appreciably. Throughout this 
series of papers,7-10 the Arima-Horie model has been 

6 A. Arima and H. Horie, Progr. Theoret. Phys. (Kyoto) 12, 623 
(1954); H. Noya, A. Arima, and H. Horie, Progr. Theoret. Phys. 
(Kyoto) Suppl. 8, 33 (1958). 

7 M. N. McDermott and R. Novick, Phys. Rev. 131, 707 (1963). 
8 F. W. Byron, Jr., M. N. McDermott, and R. Novick, Phys. 

Rev. 132, 1181 (1963). 
9 F. W. Byron, Jr., M. N. McDermott, R. Novick, B. Perry, and 

E. B. Saloman, Phys. Rev. 134, A47 (1964). 
10 M. N. McDermott, R. Novick, B. Perry, and E. B. Saloman, 

Phys. Rev. 134, B25 (1964). 

used to interpret observed dipole moments in zinc and 
cadmium, and the success of the model in these two 
elements is striking. The details of the situation in 
cadmium and zinc are summarized in Table I, along with 
results on mercury, another even Z element which has 
been investigated in considerable detail. It is seen that 
the qualitative agreement is vastly improved over the 
simple Schmidt predictions, but, nevertheless, the 
quantitative agreement is, in some cases, no better than 
50%. The average percentage discrepancy for the dipole 
moments given in Table I is about 20%, whereas the 
corresponding discrepancy with the Schmidt values is 
about 100%; i.e., on the average, the observed odd-
neutron moments are about a factor of 2 smaller than 
the shell-model values. Despite this improvement, it is 
clear from an examination of Table I that the model of 
Arima and Horie, in general, cannot account for detailed 
trends in nuclear magnetic moments. 

In the case of quadrupole moments, Arima and Horie 
have shown that for odd-neutron nuclei, the result of 
proton excitations (induced by interactions of the core 
with the odd-neutron shell) is to give rise to a quad-
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rupole moment of the form 

Q=-£(2j+l-2N)/(2j+2)-]Qo, (1) 

where (5o is a sum of a large number of terms depend
ing on the quantum numbers of the excited protons 
and on those of the last odd neutron. The factor 
- (2j+l—2N)/(2j+2) is characteristic of shell-model 
quadrupole-moment calculations and arises from the 
necessity of taking into account the symmetry require
ments on the identical nucleons in the j shell. 
|^We may indeed conjecture11 that such a factor will 
always enter into the form of Q for odd-neutrons in the 
shell model and that (Jo will be an intrinsically positive 
quantity (a conjecture borne out in first-order calcula
tions of Arima and Horie). (5o may be interpreted either 
in terms of a quadrupolar polarizability of the proton 
core or in terms of an "effective charge" of the odd 
neutrons. This latter interpretation has only limited 
validity, since it is found that substantially different 
values of the effective charge are required to explain the 
observed values for the different multipole moments in 
one and the same nucleus.1 

Kisslinger and Sorensen12 have considered a model of 
the spherical nuclei in which the residual two-body 
interactions are represented by two simple components, 
the pairing force suggested by work in superconduc
tivity, and a long-ranged part represented by a quad-
rupole force. The main assumption of the work is that 
the low-lying states of spherical nuclei can be treated in 
terms of two basic excitations, quasiparticles and 
phonons. They consider only the particles outside of 
closed shells explicitly and derive various single-particle 
and collective properties. In the regions 60 < 4̂ < 150 and 
189<^4<206, they obtain satisfactory agreement with 
the observed energies. Unfortunately, the model in this 
form does not correctly predict the magnetic dipole and 
electric quadrupole moments. For this reason they find 
it necessary to include an additional short-range 
interaction of the form considered by Arima and Horie. 
The quadrupole moments obtained with this model 
arise from both quasiparticles and phonons. The effect 
of the configuration mixing is to enhance the quasi-
particle contribution. In addition, it is found that the 
quasiparticle and phonon contributions to the quad
rupole moment are of the same sign. 

In Sec. II we present our observations on 14-year 
Cd113m. In Sec. I l l we compare the predictions of the 
various models with all of the available experimental 
results, and we discuss the quasiempirical formula given 
in Eq. (1). 

II. SPIN ANDJVEOMENTS OF Cd113™ 

A. Introduction 
Here we report on an optical double-resonance study 

of the spin and nuclear moments of 14-year Cd113w*. 
11 Due to one of us (F.W.B., Jr.). 
12 L. S. Kisslinger and R. A. Sorensen, Rev. Mod. Phys. 35, 853 

(1963). 

Previously, we have reported on Cd109 (Ref. 7), Cd107 

(Ref. 8), Zn65 (Ref. 9), Cd115 and Cd115™ (Ref. 10). 
In Cd113m, the dominant neutron configuration is 

assumed to be (2^5/2)6(1^7/2)8(3^i/2)0(l^n/2)1, in addition 
to a magic core of fifty neutrons. The single hn/2 odd 
neutron makes this a case of special interest. Parity 
considerations indicate very little configuration mixing 
of the h orbital, whereas the 3s 1/2 ground state is 
expected to be strongly mixed with 2d3/2, accounting for 
the anomalously small moments in the isotopes of 
cadmium with spin one-half. In view of the importance 
of this nucleus, we have measured the hfs intervals to 
high precision. 

The Cd113™ may be produced by the reaction 
¥dm(a,n)Cdmm. This method should yield an iso-
topically pure sample.7 Palladium foils were bombarded 
by a beam of 20-MeV alpha particles in the Brookhaven 
cyclotron, and counting measurements indicated that 
sufficient Cd113m atoms were produced for a double-
resonance experiment. However, in spite of many 
precautions, surface contamination of the foils and 
trapping of the Cd113m atoms in the palladium lattice 
prevented us from producing a suitable resonance cell. 
In view of these difficulties, it was decided to produce 
Cd113m by neutron capture and subsequent isotopic 
enrichment with an electromagnetic mass separator.10 

A 10-mg sample of separated Cd112 was irradiated in the 
MTR reactor for six weeks. It was expected that this 
would yield 6X1015 atoms of Cd113m. If we assume a 
0.1% over-all efficiency in the Argonne mass separator13 

and a 3% recovery of the Cd113m from the platinum 
mass separator target,10 then we would expect to obtain 
2X1011 atoms in the quartz resonance cell. The ex
tremely low specific activity of the Cd113m precluded a 
detailed study of the nuclear decay. However, the 
intensity of the double-resonance signals were of about 
the same magnitude as those observed in the Cd115wi 

work, showing that the estimate given above is essen
tially correct. The large thermal-neutron cross section 
for Cd113 insures that this isotope cannot survive the 
neutron irradiation. This fact and the mass separation 
assure the isotopic and isomeric identification of Cd113?n. 
In the seven-month period over which the measure
ments were made, no decay in the resonances attributed 
to Cd113m was observed. This is consistent with the 
assigned 14-year half-life.14 

B. Observations on Cd113wi 

The apparatus used in the Zeeman measurements 
was essentially the same as that described in Ref. 9. 
Unpolarized light directed along the magnetic field was 
used to excite the atoms, producing only a excitation 
(Ailf=zbl). The detector polarizer was oriented to 
accept only ir light. Low-field Zeeman transitions were 

13 We are indebted to Dr. M. S. Freedman and Dr. O. Skillbreid 
of the Argonne National Laboratories for performing this 
separation. 

14 A. C. Wahl, J. Inorg. Nucl. Chem. 10, 1 (1959). 
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observed in the Cd113m cell at fields corresponding to 
gv/gj—4/143, using a natural cadmium lamp to excite 
the atoms, and at fields corresponding to gF/gj=2/U 
and 2/13, using a Cd113 lamp. This Zeeman spectrum 
can only be produced by a spin eleven-halves isotope, 
the former transitions corresponding to the central 
F=ll/2 state and the latter two corresponding to 
F=9/2 and F= 13/2, respectively. The large hfs in the 
eleven-halves isotope requires the use of the Cd113 lamp 
to illuminate the F= 13/2 and 9/2 states, which lie out
side the lamp profile of a natural cadmium lamp. These 
results establish the nuclear spin of Cd113m to be 1= 11/2, 
in agreement with the earlier assignment based on the 
half-life of the nuclear decay.14 

Transitions observed with circularly polarized light 
indicated that the Cd113w hfs is inverted (see Ref. 7 and 
Ref. 8). Sample resonance curves are shown in Fig. 1. 
The inverted hfs implies that the nuclear magnetic 
moment is negative and that the last odd neutron is in 
a state with 7=H-f. This agrees with the h11/2 shell-
model assignment. 

The intermediate-field Zeeman dependence of transi
tions (see Fig. 2) within each of the three F states gave 
preliminary values of the hfs to be: ?(13/2—11/2) 

INCIDENT 

- H T T 
MAGNETIC FIELD(H) 

FIG. 1. Circular polarization observations in the F=13/2 state 
of Cd*13w. The vertical bars indicate the predicted position and 
intensity of the individual Zeeman resonances. These resonances 
indicate that the 3Pi hfs of Cd113w is inverted. 

193 195 

FIG. 2. Observed Zeeman resonances in Cd113m. 

= 4310(4) Mc/sec; v{l 1/2-9/2) = 3957(4) Mc/sec. 
This leads to the following preliminary values of the 
hypernne interaction constants: A(113w)= —686.6(4) 
Mc/sec; B{113m) = + 172(3) Mc/sec. Precise low-field 
direct determination of the hfs was undertaken in view 
of the theoretical interest in this nucleus (see Sec. II.A). 

In making direct hyperflne measurements in Cd113m, 
two major difficulties had to be overcome. The large 
multiplicity of levels in a spin eleven-halves isotope 
greatly reduces the transition-signal strengths. Secondly, 
high-intensity rf fields are required to produce hfs 
transitions in an atom with large nuclear spin. The first 
difficulty was overcome by using a Cd114 lamp to produce 
excitations only into the F= 11/2 central state. Follow
ing the method first developed by Kohler,16 a Cd114 

absorption cell was placed in the detection arm to reduce 
the effect of instrumental and atomic scattering without 
reducing the signal arising from transitions from the 
11/2 to the 9/2 and 13/2 states. The light arising from 
these transitions falls outside of the absorption spectrum 
of a Cd114 bulb. This technique greatly enhances the 
signal-to-noise ratio for the direct hfs transitions. 

To produce hfs transitions in a spin eleven-halves 
atom, a rf magnetic field of 0.64 G is required. To pro
duce this field we used a 100-W air-cooled Litton L 3505 

15 R. H. Kohler, Phys. Rev. 121, 1104 (1961). 
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TABLE II. Constants used in the calculations of the second-order 
corrections to the Cd113™ ZP\ hfs. 

Constant 

50(1-

G 
C2 

r V 
- 5 ) ( l - e ) 

Value of the constant 
for cadmium 

0.5402(9) 
0.8416(6) 
1.033 
1.094 
6.42 

magnetron tunable from 3.5 to 5.5 kMc/sec.16 The 
power for the magnetron was obtained from a current 
regulared 3-kV 100-mA power supply which was 
square-wave modulated at 280 cps. Unfortunately, the 
magnetron frequency is sensitive to small variations in 
the current, and unavoidable fluctuations in the power 
supply produced some frequency modulation. The high-
frequency transitions were identified by their Zeeman 
effect. Transitions were observed in pairs ^JF,Jf]<-> 
[F ' , ( M i l ) ] and [F, -M~]^> [/?', - ( M i l ) ] . The 
members of these pairs have equal and opposite linear 
Zeeman displacements. 

Precise observations were made on the following 
pairs of transitions: (13/2, ± 1 / 2 ) <-> (11/2, ± 3 / 2 ) and 
(11/2, ± 3 / 2 ) <-* (9/2, ± 1 / 2 ) . Each transition was ob
served at three different values of the magnetic field. 
These measurements lead to the following values for 
the zero-field intervals: 

p (13 /2 -11 /2) = 4310.572 (5) Mc/sec, 

v(l 1 /2 -9 /2 ) = 3949.625(7) Mc/sec. 

Under the conditions required for observing the 
(13/2-11/2) transitions, the incidental frequency modu
lation of the magnetron broadened its spectrum to about 
100 kc/sec, but the central frequency was very stable. 
In the case of the (11/2-9/2) transitions, the FM 
broadening was only about 10 kc/sec, but the mean 
frequency drifted over a somewhat larger interval. In 
all cases, the broadening of the magnetron spectrum 
was appreciably less than the atomic linewidth. At least 
ten frequency determinations were made for each 
resonance in order to reduce the effect of the magnetron 
frequency instabilities. The uncertainties in the final 
results are based on the internal consistency of the data, 
and the values given are twice the standard deviation. 

Off-diagonal hfs interactions between the IPi, 3P2 , 
and 3JPO states produce a modification of the apparent 
interaction constants. The method of Lurio, Mandel, 
and Novick17 was used to correct for these interactions 
in calculating the constants from the hfs intervals. The 
constants used in evaluating the corrections are given in 

16 The carbon blackening on the interior of tuned cavities, 
necessary to reduce instrumentally scattered light, reduced the Q 
of the cavities and made it necessary to have an rf power of greater 
than 10W. 

17 A. Lurio, M. Mandel, and R. Novick, Phys. Rev. 126, 1758 
(1962). 

Table I I and are defined in Ref. 17. Ci and Cz were 
calculated from r ^ P i ) , determined by Lurio and 
Novick,18 and r(lPi), determined by Byron, McDermott, 
and Novick.19 In Table I I I are given the individual 
electron coupling constants for Cd113m. The corrected 
hfs coupling constants are 

A (113m) = - 686.0425 (8) Mc/sec, 

B (113m) = +169.047 (9) Mc/sec. 

C. Nuclear Moments of Cd113M 

The magnetic moment can be determined from 
A (113m), if we neglect the effects of the finite nuclear 
size. That is, we assume that the ratio of the nuclear 
g factors of Cd113m and Cd111 is equal to the ratio of 
A(113m) to 4(111). For A (111) - -4123.81(1) Mc/sec20 

and /i (111)= -0.59501 (8W, 2 1 we find a value for the 
cdii3m m o m e n t of AC (113m) =1.08885 ( 1 3 W . The un
certainty results entirely from the uncertainty in\x(111). 
No allowance has been made for the effects of the finite 
nuclear size. 

The ratio of the quadrupole moments of Cd113m and 
Cd109 is just the ratio of their quadrupole interaction 
constants. Thus, Q(113m)/Q(109)= -1.02371(4), using 
5(109)= 165.143(5) Mc/sec from level-crossing meas
urements.22 The details of the connection between the 
quadrupole interaction constant 5(109) in the 3Pi state 
of cadmium and the quadrupole moment Q(109) 
= +0.78(10) b are discussed in Ref. 7. From the 
ratio of the quadrupole moments stated, we find 
Q(113m)= -0.79(10) b. 

In Sec. I, we discussed the calculations of magnetic 
moments with the configuration mixing model of Noya, 
Arima, and Horie. In these calculations, we have used 
the value of the pairing energy parameter which best 
fits the binding energy data, C— 30 MeV, A comparison 
of the observed and predicted moments is given in 
Table I for the zinc, cadmium, and mercury isotopes. 
As in the case of Zn65, Cd115, and Cd115m, this model does 

TABLE III. Individual electron hyperfine coupling 
constants for Cd113w. 

Value of the constant 
Constant in Mc/sec 

as -2058.9(25) 
am -281.0(5) 
am -42.3(8) 
bm -303.2(9) 

18 A. Lurio and R. Novick, Phys. Rev. 134, A608 (1964). 
19 F. W. Byron, Jr., M. N. McDermott, and R. Novick, Phys. 

Rev. 134, A615 (1964). 
20 R. F. Lacey (private communication). A preliminary result 

appeared in MIT Research Laboratory of Electronics Quarterly 
Progress Report, 1959, p. 49 (unpublished). 

21 W. G. Proctor and F. C. Yu, Phys. Rev. 79, 35 (1950). 
22 P. Thaddeus and M. N. McDermott, Phys. Rev. 132, 1186 

(1963). 
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TABLE IV. The spins and quadrupole moments of odd-neutron spherical nuclei. The predictions of the configuration mixing (CM) 
model and the quasiparticle (QP) model are given where calculations have been carried out. Also given are the shell-model assignment 
for each nucleus and the value of (5o obtained from Eq. (1). The quadrupole moments are given in barns. 

Neutron configuration in 
Isotope 

~Be9 

C11 

O17 

Mg2 5 

S33 

S35 

Cr63 

Pg67m 

Zn65 

Zn6 7 

Ge73 

Kr8 3 

K r 8 5 

Sr87 

Cd107 

Cd109 

Cd111* 
Cd113w 

Cd115w 

Sn119 

Te125 

Xe129w 

Xe131 

Ba135 

Ba137 

Nd143 

Nd145 

Sm147 

Sm149 

Os189 

JJgl93w 
JJgl95m 
Hg1 9 7 w 

H g 2 0 1 

H g 203 
po205 
po207 

/ 

3/2 
3/2 
5/2 
5/2 
3/2 
3/2 
3/2 
3/2 
5/2 
5/2 
9/2 
9/2 
9/2 
9/2 
5/2 
5/2 
5/2 

11/2 
11/2 
3/2 
3/2 
3/2 
3/2 
3/2 
3/2 
7/2 
7/2 
7/2 
7/2 
3/2 

13/2 
13/2 
13/2 
3/2 
5/2 
5/2 
5/2 

Qa 

+0.03 
+0.03d 

-0 .03 
+0.22 
-0.064 
+0.054 
-0 .03 
+0.24(4)° 
-0.027 
+0.16 
- 0 . 2 
+0.27 
+0.45 
+0.36 
+0.79 
+0.78 
+0.9(3) 
-0 .81 
-0 .61 
-0 .08 
-0 .20 

(-)0.42(5)« 
-0 .12 
+0.13h 

+0.20h 

-0 .48 
-0 .26 
-0 .21 
+0.06 
+0.8 
+ 1.3(4)* 
+ 1.4(6) 
+1.6(1) 
+0.50 
+0.5(8)1 
+0.17 
+0.28 

C(CM)b 

-0.027 

-0 .05 
+0.05 

0.0 
+0.14 
-0 .16 
+0.17 
+0.35 

+0.10 f 

-0 .14 

+0.10 

+0.07 

Q(QP)c 

+0.59 
+0.66 
-0 .99 
+0.89 
+0.89 
+0.53 
+0.79 
+0.75 
+0.62 

+0.19 
+0.57 
+0.47 
+0.26 
-1 .06 
-0 .56 
-1 .19 
-1 .29 
-0 .36 

+1.55 
+0.71 

addition to filled shells 

(lpm)* 
(1^3/2)3 

U^/2) 1 

iXdm)5 

(1dm)1 

(umy 
(2pm)1 

(2pmY 
d/5/2)3 

U/5/2)5 

(hm)1 

(lgm)7(2pm)2 

(lgmy(2pm)2 

(hmf(2pm)2 

(2dm)KhmY 
(2<Z5/2)5Ug7/2)6 

( 2 ^ 5 / 2 ) 5 ( l ^ / 2 ) 6 ( 3 ^ 1 / 2 ) 2 

(Un/2) 1 

(lAn/2)8 

(MmYiXhimY 
(2dm)i(uimr 
(2rfa / a)i(Un/a)8 

(2dm)iahn/2)10 . 
( 2 ^ 3 / 2 ) 3 ( U i i /

2 ) 1 0 

(2dm)3 

(2 /7 /2) 1 

(2/7/2)3 

(2 /7 /2 ) 3 

(2/7 /2)5 

(3i>3/2)3(Hl3/2)10 

(2/5/2)2(U-13/2)11 

(2 / . /0 4 ( l* i t / i ) u 

(2/6/2)4(li13/2)13 

(3^3/2) 3 ( l i l3/2) 1 2 

(2/5 /2)5 

(2/ 5 / 2 ) 5 

(2/ 5 / 2 ) 6 

Qo/A** 

0.017 
0.015 
0.008 
0.045 
0.016 
0.013 
0.005 
0.04 

0.017 
0.016 
0.036 
0.032 
0.025 
0.061 
0.060 
0.068 
0.045 
0.056 
0.008 
0.020 
0.041 
0.012 
0.012 
0.019 
0.026 
0.042 
0.034 
0.010 
0.06 
0.07 
0.07 
0.059 
0.036 
0.03 
0.009 
0.014 

a Except where otherwise stated we have used the following compilation of quadrupole moments: I. Lindgren, Perturbed Angular Correlations, Appendix I, 
Table of Nuclear Spins and Moments (North-Holland Publishing Company, Amsterdam, 1964). 

*» See Ref. 6. 
« See Ref. 12. 
d R. A. Haberstroh, thesis, Princeton University, New Jersey, Palmer Physical Laboratory, 1963 (unpublished). 
eR. Ingalls, Phys. Rev. 128, 1155 (1962); R. M. Sternheimer, Phys. Rev. 130, 1423 (1963); H. Eicher, Z. Physik 171, 582 (1963). 
«See Ref. 8. 
« G. J. Perlow, Bull. Am. Phys. Soc. 9, 11 (1964). 
* D. A. Jackson and D. H. Tuan, Phys. Rev. Letters 11, 209 (1963); G. Zu Putlitz, Ann. Phys. 11, 248 (1963); Allen Lurio, Phys. Rev. 136, A376 

(1964). 
* See Ref. j , Table I. 
i O. Redi and H. H. Stroke, Bull. Am. Phys. Soc. 9, 10 (1964). 

not entirely account for the reduction of the magnetic 
moment from the Schmidt limit. We have investigated 
other values for the coupling parameter C and find that 
the choice C=40 MeV gives slightly more satisfactory 
agreement between the observed and calculated 
moments in the zinc isotopes, and that C= 60 MeV gives 
excellent agreement in the spin one-half and spin 
eleven-halves cadmium isotopes. However, since these 
values are not consistent with the observed pairing 
energies, we will not consider them further. 

III. DISCUSSION 

A. Survey of Odd-Neutron Quadrupole Moments 
and Neutron Assignments 

In Sec. I, we discussed the theories which have been 
used by Noya, Arima, and Horie and by Kisslinger and 

Sorensen to compute the nuclear moments of spherical 
nuclei. We noted that the comparison of predicted 
electric quadrupole moments with experimental values 
provides a critical test of proposed nuclear wave func
tions. In Table IV we list all of the quadrupole moments 
which have been measured in odd-neutron nuclei for 
,4<150 and 1 8 9 < T 1 < 2 1 0 , along with the values pre
dicted on the basis of the two models. In addition, we 
give the shell-model assignment for each nucleus and 
the value of QQ obtained from Eq. (1). 

The precision of the quadrupole moments is limited 
by the well-known uncertainties in our knowledge of 
the electric-field gradient at the nucleus. Where quad
rupole moments of several isotopes of an element have 
been measured by the same technique, the precision of 
the ratio of the quadrupole moments is limited only by 
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the experimental uncertainties. For example, in the work 
on cadmium we have determined the Q(Cdmm)/Q(Cdm) 
ratio to four parts in 105 (see Sec. I I . C). However, 
various estimates7 of the field gradient differ by about 
10%. In addition, we expect that the quadrupole shield
ing corrections, which have not been included in our 
calculations, may be of comparable magnitude. Thus 
the absolute moments may be in error by as much 
as 20%. 

In order to test the validity of the conjecture summa
rized by Eq. (1), it is clearly necessary that we obtain 
level assignments which are not based on the observed 
quadrupole moments. This problem is particularly 
acute in the heavy elements such as mercury where the 
levels are so numerous and so nearly degenerate that we 
may make several possible assignments which are 
consistent with the observed spin, parity, and energy. 
In such cases we have chosen the assignment that gives 
the best agreement with the magnetic moment. Below, 
we comment on the entries in Table IV. 

1. Light Nuclei 

In this region, we have used the configurations of 
Noya, Arima, and Horie.6 These assignments may be 
chosen unambiguously since the number of single-
particle levels is small, and they are well separated in 
energy. Nuclei in which the ground state has seniority 
greater than one have not been included, since the 
quadrupole moment for the coupled nucleons in this 
case bears no simple relation to the reduced moment of 
an individual nucleon. There is increasing evidence that 
Ne21 should be treated by the Nillson model and 
that collective effects are important in the selenium 
isotopes.23'24 

The only nuclei in this region whose quadrupole 
moments are in serious doubt are Fe57* and Cr53. In the 
case of Fe57, the Mossbauer measurements at Fe"^ and 
Fe3+ sites deviate by 40%, and in the case of Cr53 only 
the order of magnitude of the absolute value is known. 

2. Cadmium through Samarium; 
Osmium through Polonium 

These two regions center about the filled shells at 
Z = 5 0 , N = 8 2 and Z = 8 2 , N= 126, respectively. Those 
odd nuclei away from closed shells exhibit large quad
rupole moments, and their even-even neighbors exhibit 
vibrational character. These observations imply the 
onset of collective effects. The neutron shells lie very 
close together in energy, so that particular attention 
must be paid to the competition between the single-
particle energies and the pairing energies which tend to 
couple pairs of particles into shells with large angular 

23 B. E. Chi and J. P. Davidson, Phys. Rev. 131, 366 (1963); 
R. M. Dreizler, Phys. Rev. 132, 1166 (1963); J. R. Roesser and 
J. P. Davidson, Bull. Am. Phys. Soc. 9, 416 (1964). 

24 W. R. Wiseman and R. M. Williamson, Nucl. Phys. 23, 536 
(1961). 

momenta. For those cases where there is any ambiguity, 
we have used the configuration which gives the best 
prediction, on the basis of the configuration mixing 
model, of the observed magnetic dipole moment. Table I 
shows these predictions for cadmium and mercury. For 
other elements, the reader should consult Ref. 6. Except 
in the case of Cdn i* and Xe129*, the quadrupole moments 
of all the isotopes of a given element were determined 
by the same technique. The Cd111* quadrupole moment 
was determined with a 7-7 correlation technique in a 
solid sample rather than by the optical double-resonance 
method which was employed for the other cadmium 
isotopes. The Xe129* moment was determined by 
Mossbauer technique rather than by the spectroscopic 
techniques used for Xe131. Unfortunately, the sign of the 
Xe129* moment was not determined in the Mossbauer 
work. 

B. Comparison of Observed Quadrupole 
Moments with Theory 

The Noya, Arima, and Horie model is outstandingly 
successful in predicting the quadrupole moments of the 
light nuclei; we note, in particular, sulfur, zinc, and 
krypton. Outside of this region they have calculated few 
moments for the odd-neutron spherical nuclei. The 
value for Xe131 is the only one of these predictions which 
is in good agreement with the observed quadrupole 
moment. This nucleus lies close to the major shell 
closure at Z = 5 0 , N=82, and it is expected that other 
moments in this region could be calculated successfully 
on the basis of their model. The two values they cal
culate in the heavy nuclei near the major closed shells at 
Z = 82, N= 126 are in poor agreement with experiment. 

Kisslinger and Sorensen have not considered nuclei 
lighter than ./I = 60, and in the region 60<^4<85 their 
calculated moments are at least a factor of 2 greater 
than the measured values. For the four cases Sr87, Cd107, 
Cd109, and Cd111*, the quasiparticle predictions agree 
with the measured values within about 40%. Except for 
sporadic cases such as Ba137 and the two isotopes of 
mercury, the remaining predictions are not satisfactory. 
As we indicated in Sec. I, the basic pairing-plus-
quadrupole-force model was modified, and a number of 
ad hoc assumptions were introduced to yield even this 
rather limited agreement. 

The quadrupole moments obtained by Noya, Arima, 
and Horie are based on a first-order calculation of the 
deformation of the proton core by the neutrons in the 
j shell via residual two-body interactions. In the case 
of heavy nuclei with many close-lying levels, we would 
expect that a higher-order treatment would be required, 
and, in fact, we have noted that the Noya, Arima, and 
Horie results do not agree with experiment in such 
regions. In Sec. I, we have conjectured that the factor 
— (2y+l—2N)/(2j+2) which appears in their theory 
will also appear in a more complete (i.e., higher order) 
treatment of the quadrupole moments. In the spirit of 
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_ FIG. 3. A plot of Qo/A213 versus Ay the nuclear mass number. 
Qo is defined in the text. The curve has been drawn to indicate the 
regularities of the moments. Experimental values which are in 
particular doubt are indicated by their mass numbers and are 
discussed in the text. The quadrupole moments are given in units 
of F2 (10"26 cm2). 

this conjecture, we might expect that the factor Qo in 
Eq. (1) will depend strongly on the number of protons 
in the core and somewhat more weakly on the neutron 
number. 

Using the shell-model assignments listed in Table IV 
and discussed in Sec. III.A, we obtained values of QQ 
for all of the odd-neutron spherical nuclei.25 These 
values are listed in column 7 of Table IV and are plotted 
against A in Fig. 3. The most striking conclusionJ:hat 
we obtain is the fact that all of the values of Qo so 
obtained are positive. Moreover, it is clear that QQ 
depends not only on the proton number but also on the 
neutron number. The dependence on the neutron 
number is greatest in the heavy nuclei and is particularly 
evident in the mercury isotopes. 

In Fig. 4, we have plotted the average value of QQ, QO 
for each element. It is seen that Qo appears as an intrinsi
cally positive quantity as indicated above, and that the 
curve has an oscillatory character of the type usually 
associated with a Townes-Low-Foley plot.26 Since 
neutron and proton major closed shells generally occur 
together in the Periodic Table, it is difficult to be 
certain whether or not the minima occur at the closing 
of the proton shell, as our plot against Z would seem to 
suggest or at the closing of the neutron shells. 

We should emphasize at this point the difference 
26 The ./-shell in Zn65, as indicated in Table IV, is half filled, so 

that the factor (2j-fi—2N) is zero. Since the observed Zn66 

quadrupole moment is finite, the corresponding value Q0 will be 
infinite. However, since the measured moment is smaller than any 
other measured in odd-neutron nuclei, we believe that this is 
essentially consistent with the prediction of Q—0. 

26 C. H. Townes, H. M. Foley, and W. Low, Phys. Rev. 76, 1415 
(1949). 

FIG. 4. A plot of Qo/A2lz versus Z, the nuclear charge. Qo is the 
average value of Qo for each element. The two cases with large 
experimental uncertainty, as discussed in the text, are indicated by 
their mass numbers. The smooth curve has been drawn to indicate 
the regularities in the averaged moments. The arrows indicate the 
major shell closures. The quadrupole moments are given in units 
of F2 (10-26 cm2). 

between Fig. 4 and the Townes-Low-Foley plot; 
it is, namely, that we plot against the number of 
protons and not against the number of odd neutrons. 
Firstly, we expect that after taking out the factor 
-(2j+l-2N)/(2j+2) we will find the QQ for the 
various isotopes of a given element to be roughly equal, 
and for that reason, a plot against the neutron number 
is not particularly illuminating. Secondly, since we are 
trying to look at the problem from the point of view of 
the usefulness of perturbation theory, the protons are 
particularly relevant, especially in the case of odd-
neutron even-proton nuclei, where the quadrupole 
moment is to be imagined as an entirely induced 
effect, arising from the interaction of the neutrons in 
the last j shell with the core proton shells. 

If one makes the same plot for odd-proton nuclei, one 
again finds QQ to be an intrinsically positive quantity, 
except in the case of V51.27 Because of the possibility of 
excitations into and out of the j shell itself, which is a 
proton shell in this case, we would not expect the factor 
— (2j-}-l—2N)/(2j+2) to give such a good representa
tion of the experimental facts. Similarities between the 
odd-neutron even-proton case and the odd-proton even-
neutron case are apparent, but any comparison between 
the two is unwarranted because of the necessary crude-
ness of the analysis. 

27 It has been suggested that the configuration for V51 should be 
(l</3/2)~2(l/7/2)6 rather than (I/7/2)3; [H. Horie and A. Arima, 
Phys. Rev. 99, 778 (1955)]. It is also true that the configuration 
(1^3/2)-2(l/7/2)3 gives a much better magnetic moment value for 
Sc46 than does (I/7/2)1. However, given the "magic" character of 
nuclei with 20 protons, these possibilities seem unlikely. 


